



# ПАСПОРТ

# ТЕПЛОВЕНТИЛЯТОРЫ









# Серия ТЕ

С ЭЛЕКТРИЧЕСКИМ ИСТОЧНИКОМ ТЕПЛА

КЭВ-20Т20Е КЭВ-25Т20Е КЭВ-30Т20Е КЭВ-35Т20Е

### СОДЕРЖАНИЕ

| 1  | НАЗНАЧЕНИЕ                                      | 3  |
|----|-------------------------------------------------|----|
| 2  | УСЛОВИЯ ЭКСПЛУАТАЦИИ                            | 3  |
|    | ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ                      |    |
| 4  | УСТРОЙСТВО И ПОРЯДОК РАБОТЫ                     | 4  |
| 5  | УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ                       | 5  |
| 6  | комплектность                                   | 6  |
| 7  | ТРЕБОВАНИЯ К УСТАНОВКЕ И ПОДКЛЮЧЕНИЮ            | 6  |
| 8  | ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ                        | 6  |
| 9  | ТРАНСПОРТИРОВКА И ХРАНЕНИЕ                      | 7  |
| 10 | СВЕДЕНИЯ ОБ УТИЛИЗАЦИЯ                          | 8  |
| 11 | ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ | 8  |
| 12 | ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА                       | 9  |
| 13 | СВИДЕТЕЛЬСТВО О ПРИЕМКЕ                         | 16 |
| 14 | СВИДЕТЕЛЬСТВО О ПОДКЛЮЧЕНИИ                     | 16 |
|    |                                                 |    |



Ваши замечания и предложения присылайте по адресу 195279, Санкт- Петербург, а /я 132, шоссе Революции, 90

Тел. (812) 301-99-40, тел./факс (812) 327-63-82 Сервис-центр: (812) 493-35-98

www.teplomash.ru

### 1 НАЗНАЧЕНИЕ

- 1.1 Напольные тепловентиляторы конвекционного типа КЭВ-20Т20Е, КЭВ-25Т20Е, КЭВ-30Т20Е и КЭВ-35Т20Е, именуемые в дальнейшем «тепловентиляторы», имеют электрический источник тепла. Предназначены для рециркуляционного отопления помещений большого объема: производственных цехов, складов, ангаров и других помещений, а также для индивидуального обогрева локальных зон и отдельных рабочих мест.
- 1.2 Тепловентиляторы НЕ предназначены для воздушного отопления в автомойках и других помещениях, в воздухе которых присутствует капельная влага, туман.
- 1.3 Рекомендации по выбору тепловентиляторов, их тепловой мощности и расположению внутри помещения в зависимости от наружной температуры, должен давать специалист-проектант по отоплению и вентиляции. Ориентировочные рекомендации можно получить у нас на сайте www.teplomash.ru.
  - 1.4 Тепловентиляторы рассчитаны для работы, как в периодическом, так и в непрерывном режиме.

### 2 УСЛОВИЯ ЭКСПЛУАТАЦИИ

2.1 Климатическое исполнение УХЛ

категория размещения 3

2.2 Температура окружающего воздуха в помещении\*

от минус 10 до плюс 40°C

\*допускается кратковременное понижение температуры до минус 25°C

- 2.3 Относительная влажность при температуре +25°C
- не более 80%
- 2.4 Содержание пыли и других твердых примесей

не более  $10 \text{ мг/м}^3$ ;

2.5 Не допускается присутствие в воздухе веществ, агрессивных по отношению к углеродистым сталям, алюминию и меди (кислоты, щелочи), липких либо волокнистых веществ (смолы, технические или естественные волокна), капельной влаги, тумана и пр.

### 3 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

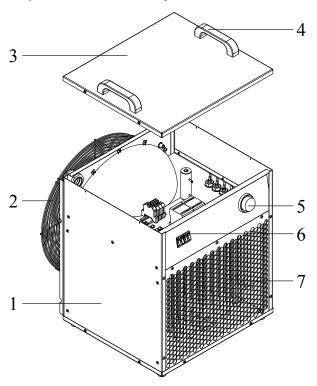
- 3.1 Технические характеристики приведены в таблице 1.
- 3.2 Класс защиты от поражения электротоком 1.
- 3.3 Степень защиты, обеспечиваемая оболочкой IP21.
- 3.4 Тепловентилятор должен обеспечивать непрерывную работу в пределах установленного срока службы 5 лет, в том числе, срок хранения в условиях 2 группы по ГОСТ 15150 при отсутствии в воздухе кислотных, щелочных и других агрессивных примесей 1 год;
  - 3.5 Драгоценные металлы отсутствуют.

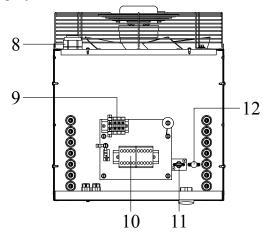
Таблица 1. Технические характеристики

| Таолица 1. Технические характерист                  |                                                           |            | характеристики |            |
|-----------------------------------------------------|-----------------------------------------------------------|------------|----------------|------------|
| Модель                                              | КЭВ-20Т20Е                                                | КЭВ-25Т20Е | КЭВ-30Т20Е     | КЭВ-35Т20Е |
| Тараметры питающей сети, В/Гц     380/50            |                                                           |            | I              |            |
| Режимы мощности <sup>1</sup> , кВт                  | */10/20                                                   | */15/25    | */15/30        | */20/35    |
| Расход воздуха, м <sup>3</sup> /ч                   |                                                           | 25         | 00             |            |
| Габаритные размеры <sup>2</sup> (ДхШхВ), мм         | 524x557x452                                               |            |                |            |
| Подогрев воздуха, °С                                |                                                           |            |                |            |
| режим вентилятора                                   | 0                                                         | 0          | 0              | 0          |
| минимальная тепловая мощность и 70% расхода         | 17                                                        | 25         | 25             | 34         |
| минимальная тепловая мощность и 100% расхода        | 12                                                        | 18         | 18             | 23         |
| максимальная тепловая мощность и 100% расхода       | 24                                                        | 29         | 35             | 41         |
| Масса, кг                                           | 22,4                                                      | 23,2       | 24,2           | 25,0       |
| Потребляемая мощность двигателя, Вт                 | 180                                                       |            |                |            |
| Максимальный ток при номинальном напряжении, А      | 36                                                        | 46         |                | 58         |
| Уровень звукового давление на расстоянии 5м, дБ (А) | 46                                                        |            |                |            |
| Частота вращения, об/мин                            | 1350                                                      |            |                |            |
| Управление                                          | Поворотные ручки или управление клавишными выключателями. |            |                |            |

### Примечания

<sup>\*</sup> Режим вентилятора


<sup>1</sup> при номинальном напряжении заданные параметры могут отличаться на  $^{+5}_{-10}$  % от указанных.


<sup>2</sup> размеры с креплением, без учёта гермоввода.

# 4 УСТРОЙСТВО И ПОРЯДОК РАБОТЫ

- 4.1 Тепловентилятор осуществляет рециркуляционное отопление, всасывая воздух из помещения, нагревая его ТЭНами и возвращая назад в помещение.
- 4.2 Тепловентилятор имеет прочный корпус, изготовленный из оцинкованной стали покрытой высококачественным полимерным покрытием. Внутри корпуса установлены трубчатые электронагреватели (ТЭНы), осевой вентилятор и блок управления. На лицевой стороне корпуса закреплена решетка воздуховыпускного окна. Основные детали и узлы показаны на рисунке 1.
  - 4.3 На рисунке 2 даны габаритные и установочные размеры.
  - 4.4 Электрические схемы тепловентиляторов приведены на рисунках 3-6.

Рисунок 1. Тепловентилятор





- 1 Корпус тепловентилятора
- 2 Вентилятор осевой (ВО-4М400А)
- 3 Верхняя крышка
- 4 Ручка для переноса
- 5 Ручка терморегулятора
- 6 Клавиши переключения режимов (исполнение 1) или ручка роторного переключателя (исполнение 2)
- 7 Решетка воздуховыпускного окна
- 8 Кабельный ввод
- 9 Клеммная колодка для подключения к сети
- 10 Электромагнитный контактор
- 11 Аварийный термовыключатель
- 12 Термовыключатель продувки
- 4.5 Управление тепловентилятором
- 4.5.1 Управление тепловентиляторами осуществляется ручками роторного переключателя и термостата (позволяют регулировать тепловую мощность и поддерживать необходимую температуру воздуха), установленными на корпусе тепловентилятора.



# Ручка терморегулятора Ручка роторного переключателя (Исполнение 2) О - выключено; О - режим вентилятора (без нагрева) О - режим вентилятора (без нагрева) О - минимальная тепловая мощность и 70% расход; О - минимальная тепловая мощность и 100% расход; О - максимальная тепловая мощность и 100% расход. О - максимальная тепловая мощность и 100% расход.

- 4.6 Устройство аварийного отключения ТЭНов
- 4.6.1 Тепловентиляторы снабжены устройством аварийного отключения ТЭНов в случае перегрева корпуса. Перегрев может наступить от следующих причин:
- входное и выходное окна тепловентилятора загромождены посторонними предметами или подвержены сильному загрязнению;
  - вышел из строя вентилятор;
- тепловая мощность тепловентилятора сильно превышает теплопотери помещения, в котором она работает (например, при работе в помещении небольшого объема). В этом случае не рекомендуется устанавливать терморегулятор на высокие значения температуры.
- 4.6.2 При перегреве корпуса тепловентилятора аварийный термовыключатель выключает нагрев ТЭНов и далее остается в выключенном состоянии. Вентилятор при этом продолжает работать. Для возвращения тепловентилятора в работоспособное состояние необходимо:
  - отключить тепловентилятор от питающей сети;
  - дождаться пока он остынет;
  - выяснить причины, вызывающие срабатывание аварийного термовыключателя и устранить их;
- снять верхнюю крышку, открутив винты, и нажать на кнопку, возвращающую аварийный термовыключатель в рабочее состояние (см. рисунок 1, поз.11).
  - 4.7 Автоматическая задержка выключения вентилятора
- 4.7.1 В тепловентиляторах с электрическим источником тепла предусмотрена автоматическая задержка выключения вентилятора. После выключения изделия на панели управления, вентилятор продолжает работу до тех пор, пока температура ТЭНов не снизится до заданной величины (обычно в течение 1-2 мин.) В зависимости от установки и условий эксплуатации, продувочный режим вентилятора может не включаться или включаться не сразу после выключения изделия, а через несколько минут. При выключении иным способом (снятие напряжения в сети и т.д.) продувочный режим вентилятора не включится, поэтому возможно срабатывание защиты от перегрева остаточным теплом ТЭНов. Тогда при повторном включении тепловентилятора будет работать только вентилятор. Для восстановления работы нагревательных элементов см. п.4.6
- 4.8 Заводом-изготовителем могут быть внесены конструктивные изменения в изделие, не ухудшающие качество и надежность, которые не отражены в настоящем паспорте.

### 5 УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

- 5.1 При эксплуатации электроприборов с целью снижения риска возгорания, поражения током и травм всегда должны соблюдаться следующие базовые меры предосторожности:
- 5.2 Работы по установке, обслуживанию и подключению должны проводиться квалифицированным специалистом (-ами) в соответствии с установленными нормами и стандартами «Правил технической эксплуатации электроустановок потребителей» (утверждены приказом Минэнерго от 13.01.2003 г.) и «Правил по охране труда при эксплуатации электроустановок» (утверждены приказом Министерства труда и социальной защиты РФ от 24.07.2013 г. № 328н).
- 5.3 Запрещается эксплуатация тепловентиляторов без заземления. Использовать нулевой провод в качестве заземления запрещается. Болт заземления находится внутри корпуса и соединен на заводе-изготовителе проводом с соответствующей клеммой входной клеммной колодки.
- 5.4 Запрещается эксплуатировать изделие в отсутствии персонала, в частности, в автоматизированных или иных помещениях (шахты, тоннели, и т.д.).

- 5.5 Внутри тепловентиляторов установлен нагревательный элемент. Во время эксплуатации корпус изделия может нагреваться. Во избежании ожогов рекомендуется с осторожностью приближаться к работающему изделию.
- 5.6 Не оставляйте без присмотра детей или людей со сложностями в передвижении вблизи работающего тепловентилятора.
- 5.7 В случае неисправности отключите изделие от питания, и прежде, чем снова его эксплуатировать, убедитесь в том, что квалифицированным специалистом были проведены его полная диагностика и обслуживание/ремонт.
- 5.8 Данный тепловентилятор предназначена для использования только в помещении. Не подвергайте изделие воздействию воды или высокой влажности.
  - 5.9 Отключите изделие от питания перед чисткой и техническим обслуживанием.
- 5.10 После выключения тепловентилятора ручкой роторного переключателя или клавишами, тепловентилятор остается в «режиме ожидания». Для полного отключения необходимо обесточить тепловентилятор на силовом щите потребителя.
- 5.11 Не вставляйте и не допускайте попадания инородных предметов в воздухозаборное или воздуховыпускное окна тепловентилятора, так как это может привести к поражению электрическим током, возгоранию или повреждению изделия.
- 5.12 Не допускается класть на тепловентилятор любые предметы, а также закрывать или блокировать воздухозаборное или воздуховыпускное окна, так как это может привести к перегреву внутренних компонентов изделия и как следствие увеличить риск возгорания.
- 5.13 В любом электроприборе или оборудовании существует риск возникновения внутренних искр. Не устанавливайте тепловентилятор вблизи находящихся в воздухе летучих веществ или легко воспламеняющихся соединений, в связи с риском возникновения пожара или взрыва.
- 5.14 Допустима эксплуатация только в соответствии с данным паспортом. Любое другое использование изделия отличное от рекомендованного производителем может стать причиной возгорания, поражения электрическим током или травм.

### 6 КОМПЛЕКТНОСТЬ

| <b>№</b><br>п/п | Наименование    | Кол-во |
|-----------------|-----------------|--------|
| 6.1             | Тепловентилятор | 1шт.   |
| 6.2             | Паспорт         | 1шт.   |

### 7 ТРЕБОВАНИЯ К УСТАНОВКЕ И ПОДКЛЮЧЕНИЮ

- 7.1 При установке, монтаже и запуске в эксплуатацию необходимо соблюдать меры безопасности указанные в разделе 5.
- 7.2 Установка тепловентилятора
- 7.3 Тепловентилятор допускается устанавливать только в вертикальном положении на прочную плоскую поверхность. Не допускайте наличие каких-либо предметов ближе одного метра от воздуховыпускного окна, в том числе мебели или легкоплавящихся предметов, а также предметов, цвет которых может меняться при нагревании.
  - 7.4 Подключение тепловентилятора к электрической сети
- 7.4.1 Подключение к электрической сети осуществляется через автоматический выключатель (приобретается отдельно) в соответствии с «Правилами эксплуатации электроустановок». Номинальный ток автоматического выключателя и сечение подводимых медных проводов следует выбирать в соответствии с таблицей 2.

Таблица 2. Номинальные токи автоматических выключателей и сечение медных проводов подводящих кабелей.

| Модель                                                                     | Параметры<br>питающей сети | Номинальный ток автоматического выключателя | Кабель |
|----------------------------------------------------------------------------|----------------------------|---------------------------------------------|--------|
| КЭВ-20Т20Е                                                                 | 380B                       | 40A                                         | 5x10,0 |
| КЭВ-25Т20Е                                                                 | 380B                       |                                             |        |
| КЭВ-30Т20Е                                                                 | 380B                       | 63A                                         | 5x16,0 |
| КЭВ-35Т20Е                                                                 | 380B                       |                                             |        |
| Примечание - рекомендуется использовать кабели с многопроволочными жилами. |                            |                                             |        |

- примечание рекомендуется использовать каоели с многопроволочными жилами.
- 7.4.2 Для подключения к сети необходимо снять верхнюю крышку тепловентилятора, открутив винты, завести силовой кабель и подключить к клеммной колодке согласно электрической схеме тепловентилятора.
  - 7.4.3 Питание тепловентилятора осуществляется от трехфазной электрической сети с напряжением 380В 50Гц.
  - 7.5 Ввод тепловентилятора в эксплуатацию
  - 7.5.1 При вводе тепловентилятора в эксплуатацию необходимо:
  - убедиться в отсутствии препятствий для всасывания воздуха;
  - проверить напряжение питания.
- 7.5.2 При первом включении изделия происходит сгорание консервирующей смазки с поверхности ТЭНов с появлением дыма и характерного запаха. Поэтому рекомендуется перед монтажом включить тепловентилятор в режим полной мощности на 20 минут в хорошо проветриваемом помещении.

7.5.3 Для увеличения эксплуатационного срока службы тепловентилятора с электрическим источником тепла рекомендуется перед выключением оставить тепловентилятор работать несколько минут с выключенными нагревателями для снятия остаточного тепла ТЭНов.

### 8 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 8.1 Ремонт и техническое обслуживание тепловентилятора должно осуществляться квалифицированным специалистом при этом необходимо соблюдать меры безопасности указанные в разделе 5.
- 8.2 Для обеспечения надежной и эффективной работы тепловентиляторов, повышения их долговечности необходим правильный и регулярный технический уход. <u>Для контроля работы тепловентилятора необходимо</u> ежемесячно:
  - осматривать тепловентилятор и ТЭНы (отсутствие шума и вибраций при работе вентилятора);
  - при необходимости очищать поверхности корпуса от загрязнения и пыли;
- при длительных перерывах в эксплуатации необходимо для просушки ТЭНов включать тепловентилятор на время не менее 30 минут в режиме максимальной мощности;
- проверять электрические соединения тепловентилятора для выявления ослабления, подгорания, окисления (ослабления устранить, подгорания и окисления зачистить).
- 8.3 Частое срабатывание аварийного термовыключателя не является нормальным режимом работы тепловентилятора и требует выявления причины. При повторном включении тепловентилятора, после автоматического выключения от перегрева, следует его осмотреть и убедиться, что вентилятор вращается. При появлении повышенной вибрации, запаха плавления изоляции следует прекратить эксплуатацию и отключить тепловентилятор от сети.
- 8.4 Все виды технического обслуживания проводятся по графику вне зависимости от технического состояния тепловентилятора. Уменьшать установленный объем и изменять периодичность технического обслуживания не допускается.
  - 8.5 Устанавливаются следующие виды технического обслуживания с момента ввода изделия в эксплуатацию:
  - техническое обслуживание №1 (ТО-1), через 150-170 ч;
  - техническое обслуживание №2 (ТО-2), через 600-650 ч;
  - техническое обслуживание №3 (ТО-3), через 2500-2600 ч. но не реже 1 раза в год;
  - техническое обслуживание №4 (ТО-4), через 5000-5200 ч. но не реже 1 раза в 2 года.

Примечание – количество часов реальной работы тепловентилятора.

- 8.6 При ТО-1 производятся:
- внешний осмотр с целью выявления механических повреждений;
- очистка (продувка) наружной поверхности ТЭНов пылесосом (без демонтажа);
- проверка надежности заземления изделия;
- проверка состояния винтовых соединений;
- 8.7 При ТО-2 производятся:
- TO-1;
- проверка сопротивления изоляции;
- проверка тока потребления электродвигателя;
- проверка уровня вибрации и шума органолептическим методом;
- 8.8 При ТО-3 производятся:
- TO-2:
- очистка (продувка) вентилятора от загрязнений (без демонтажа);
- протяжка клемм, проверка отсутствия подгорания и окисления.
- 8.9 При ТО-4 производятся:
- TO-3;
- очистка (продувка) контактора от загрязнений.
- 8.10 Предприятие потребитель должно вести учет технического обслуживания по форме, приведенной в Таблице 3.

Таблица 3. Учет технического обслуживания

|   | Дата | Количество часов работы с начала эксплуатации | Вид технического<br>обслуживания | Замечания о техническом состоянии изделия | Должность, фамилия,<br>подпись ответственного лица |
|---|------|-----------------------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|
| Į |      |                                               |                                  |                                           |                                                    |

### 9 ТРАНСПОРТИРОВКА И ХРАНЕНИЕ

- 9.1 Тепловентиляторы упакованы в коробки из гофрированного картона, с нанесенным на них фирменным логотипом компании, и могут транспортироваться всеми видами крытого транспорта при температуре от минус 50 до плюс 50°С и относительной влажности не более 80% (при температуре 25°С).
- 9.2 Тепловентиляторы транспортируют любым видом транспорта в соответствии с правилами, действующими на каждом виде транспорта. При транспортировании необходимо соблюдать манипуляционные знаки, указанные на упаковке и исключать возможные удары и перемещения внутри транспортного средства.
  - 9.3 Допускается транспортирование изделий в универсальных контейнерах по ГОСТ 18477 по согласованию сторон.

9.4 Тепловентиляторы должны храниться в упаковке изготовителя в отапливаемом помещении от плюс 5 до плюс 40°C и относительной влажности не более 80% (при температуре 25°C).

**ВНИМАНИЕ!** ПОСЛЕ ТРАНСПОРТИРОВАНИЯ ИЗДЕЛИЯ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ, СЛЕДУЕТ ВЫДЕРЖАТЬ ИЗДЕЛИЕ В ПОМЕЩЕНИИ, ГДЕ ПРЕДПОЛАГАЕТСЯ ЕГО ЭКСПЛУАТАЦИЯ, БЕЗ ВКЛЮЧЕНИЯ В СЕТЬ НЕ МЕНЕЕ 2 ЧАСОВ.

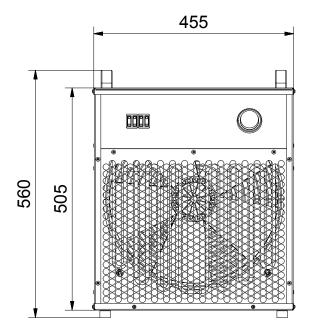
### 10 СВЕДЕНИЯ ОБ УТИЛИЗАЦИЯ

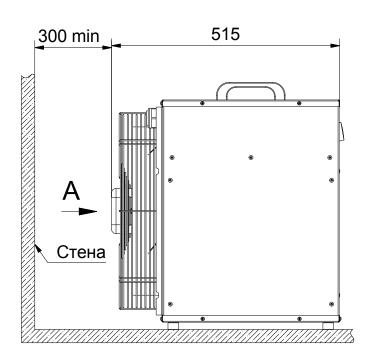
- 10.1 В случае непригодности тепловентилятора для использования или эксплуатации после окончания установленного срока службы производится его утилизация. Использование непригодного тепловентилятора ЗАПРЕЩЕНО!
- 10.2 Утилизация тепловентилятора после окончания срока эксплуатации не требует специальных мер безопасности и не представляет опасности для жизни, здоровья людей и окружающей среды. Изношенные тепловентиляторы сдаются в пункты вторсырья.

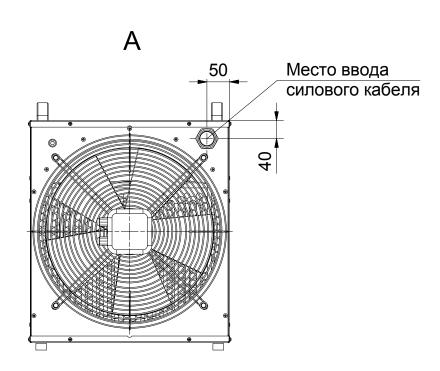
### 11 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

- 11.1 В эксплуатации по различным причинам могут возникать неисправности изделия, нарушающие его нормальную работу. В таблице 4 рассмотрены наиболее характерные неисправности, возникавшие при эксплуатации данного изделия.
- 11.2 Все работы по отысканию и устранению неисправностей в электрических цепях изделия следует выполнять, соблюдая требование правил техники безопасности (раздел 5).

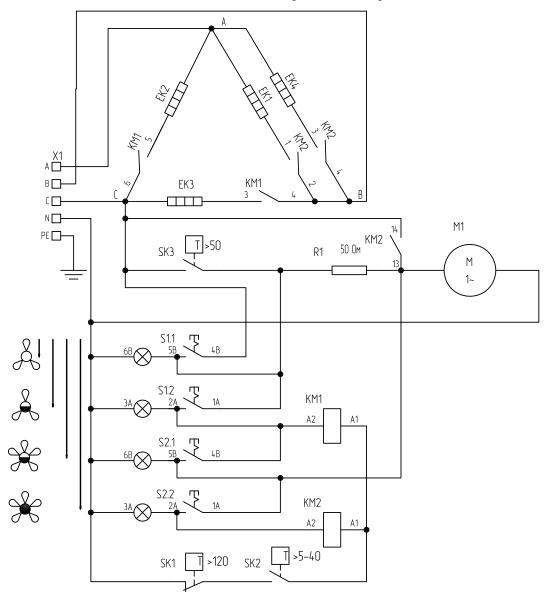
Таблица 4. Возможные неисправности


| Таолица 4. Возможные неисп                         |                                                                                           |                                                     |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------|--|
| Характер неисправности и ее<br>внешнее проявление  | Вероятная причина                                                                         | Способ устранения                                   |  |
|                                                    | Отсутствует напряжение в сети.                                                            | Проверить напряжение по фазам.                      |  |
| Тепловентилятор не включается                      | Неисправен переключатель                                                                  | Проверить исправность<br>переключателя              |  |
| Тепловентилятор подает ненагретый воздух           | Сработал аварийный термовыключатель                                                       | см. п.4.6                                           |  |
| Не включается секция ТЭНов                         | Температура в помещении выше<br>установленной на терморегуляторе                          | Изменить положение регулятора, если это необходимо. |  |
| при включенном вентиляторе                         | Неисправен электромагнитный контактор                                                     | Заменить электромагнитный контактор                 |  |
| Снизилась сила струи с уменьшением расхода воздуха | Сильное загрязнение решетки воздухозаборного окна или ее перекрытие посторонним предметом | Прочистить решетку (раздел 8)                       |  |
| Тепловентилятор не                                 | Неисправен переключатель                                                                  | Проверить целостность<br>переключателя              |  |
| отключается при выключении<br>переключателями      | Заклинило электромагнитный контактор                                                      | Прочистить или заменить электромагнитный контактор  |  |

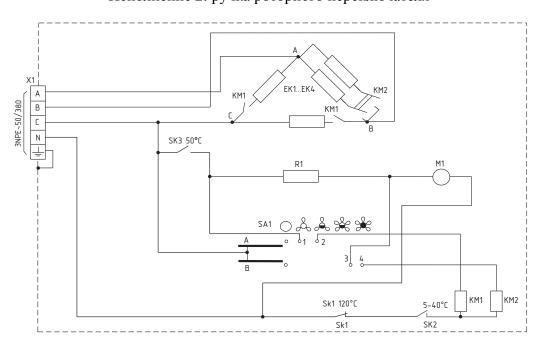

# 12 ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА


- 12.1 Предприятие-изготовитель гарантирует надежную и бесперебойную работу тепловентилятора в течение 24 месяцев со дня ввода в эксплуатацию, но не более 30 месяцев со дня продажи конечному потребителю.
- 12.2 Если какая-либо деталь выйдет из строя по причине дефекта материала или изготовления она будет бесплатно отремонтирована или заменена АО «НПО «Тепломаш».
- 12.3 На тепловентиляторы распространяется гарантия от сквозной коррозии. Если какая-либо часть корпуса тепловентилятора подверглась сквозной коррозии, то поврежденная часть будет бесплатно отремонтирована или заменена. Термин «сквозная коррозия» означает наличие в корпусе сквозного отверстия, возникшего в результате коррозии корпуса снаружи или изнутри по причине исходного дефекта материала или изготовления.
- 12.4 AO «НПО «Тепломаш» не несет ответственности, если необходимость ремонта или замены детали была вызвана одним из следующих факторов:
  - внешним повреждением тепловентилятора (вмятины, трещины и прочие повреждения, нанесённые извне);
- несоблюдением всех рекомендаций и предписаний завода-изготовителя, относящихся к монтажу, подключению, применению и эксплуатации, приведенных в данном паспорте;
- использованием при монтаже, подключении, наладке и эксплуатации элементов, и компонентов, не рекомендованных производителем;
  - несанкционированными производителем переделками или изменением конструкции оборудования;
  - эксплуатационным износом деталей при неправильной эксплуатации.
- непроведением регулярного технического обслуживания тепловентилятора с момента приёмки его в эксплуатацию.
- 12.5 Техническое обслуживание тепловентилятора должно осуществляться в соответствии с разделом 8 настоящего паспорта. Проведение технического обслуживания может осуществляться только специально подготовленным персоналом. Результаты технического обслуживания отмечаются в паспорте на продукцию, заполняемом уполномоченным специалистом.
  - 12.6 Паспорт подлежит сохранению в течение всего срока действия гарантийных обязательств.
- 12.7 Производитель не осуществляет проведение регулярного технического обслуживания за свой счёт и так же не оплачивает проведение обслуживания сторонними организациями.
- 12.8 В случае выхода изделия из строя в период гарантийного срока предприятие-изготовитель принимает претензии только при получении от заказчика технически обоснованного акта с указанием характера неисправности, назначения помещения, условий эксплуатации и заполненного свидетельства о пусконаладочных испытаниях или свидетельства о подключении. Бланк акта по форме TM-13 можно взять с сайта http://www.teplomash.ru/service/.
- 12.9 Гарантийный (по предъявлению паспорта на изделие со штампом завода-изготовителя) и послегарантийный ремонт тепловентиляторов осуществляется на заводе-изготовителе.
- 12.10 Гарантия не предусматривает ответственность АО «НПО «Тепломаш» за потерянное время, причиненное неудобство, потерю мобильности или какой-либо иной ущерб, причиненный Вам (или другим лицам) в результате дефекта, на который распространяется гарантийное обязательство, либо ущерба, являющегося следствием этого дефекта.

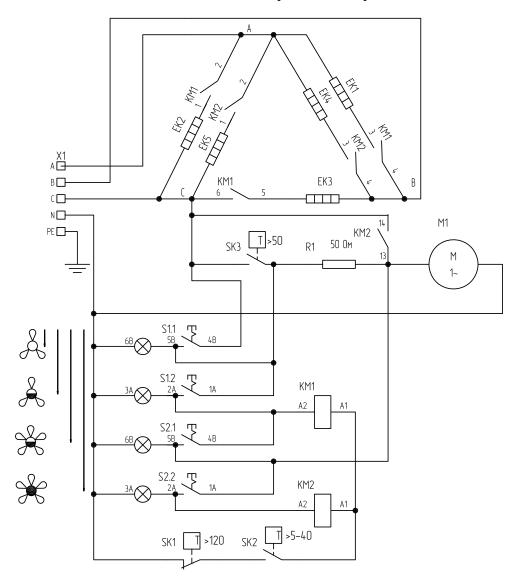
РЕКЛАМАЦИИ БЕЗ ТЕХНИЧЕСКОГО АКТА И ПАСПОРТА НА ИЗДЕЛИЕ С ЗАПОЛНЕННЫМ СВИДЕТЕЛЬСТВОМ О ПОДКЛЮЧЕНИИ НЕ ПРИНИМАЮТСЯ!


Гарантийный и послегарантийный ремонт осуществляется по адресу: 195279, Санкт-Петербург, шоссе Революции, 90 Тел. (812) 301-99-40, тел./факс (812) 327-63-82 Сервис-центр: (812) 493-35-98

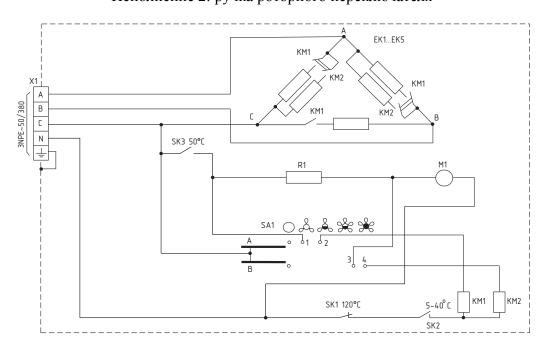




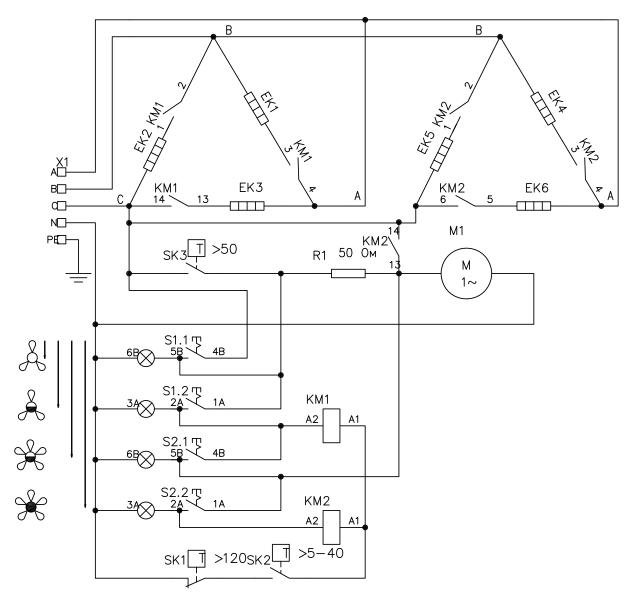




Исполнение 1: клавиши переключения режимов

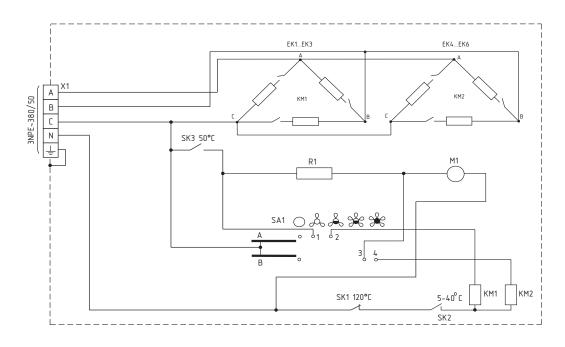



Исполнение 2: ручка роторного переключателя

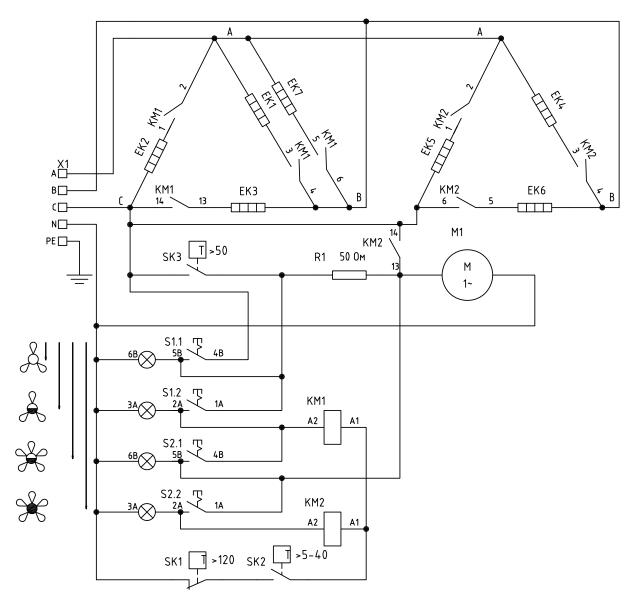



Исполнение 1: клавиши переключения режимов

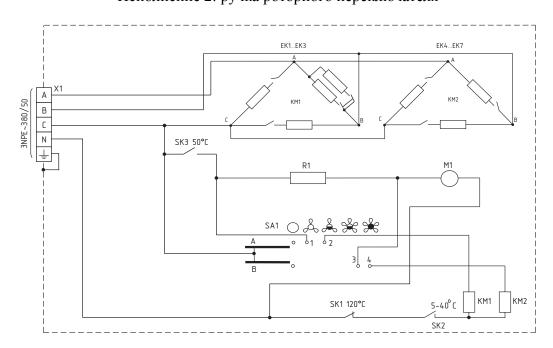



Исполнение 2: ручка роторного переключателя




Исполнение 1: клавиши переключения режимов




Исполнение 2: ручка роторного переключателя



# Исполнение 1: клавиши переключения режимов



Исполнение 2: ручка роторного переключателя



# для заметок

| _ |  |
|---|--|
|   |  |

# 13 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

| Тепловент  | гилятор модели: (нужное отметить)                                                                  |           |     |
|------------|----------------------------------------------------------------------------------------------------|-----------|-----|
| Заводской  | КЭВ-20Т20Е<br>КЭВ-25Т20Е<br>КЭВ-30Т20Е<br>КЭВ-35Т20Е                                               | СБ        | OTK |
|            | й тепловентилятор изготовлен и принят в соответо одным к эксплуатации. Декларация о соответствии Е |           |     |
| Дата изгот | говления/                                                                                          | М.П       | [.  |
|            | 14 СВИДЕТЕЛЬСТВО О ПОДКЛЮЧЕН                                                                       | ИИ        |     |
| Тепловент  | гилятор КЭВTE;                                                                                     |           |     |
| Заводской  | номер №;                                                                                           |           |     |
| Подключе   | ен к сети в соответствии с п.7 Паспорта                                                            |           |     |
| Специали   | стом-электриком Ф.И.О.:                                                                            | ,         |     |
| Имеющим    | игруппу по электробезопасности;                                                                    |           |     |
| Подтверж,  | дающий документ                                                                                    | ;         |     |
| Дата подк. | лючения: «»20г.                                                                                    | (Подпись) | _   |